

Basics in programming

with

Python

Free eBook

by Adam

3

Table of Contents
Introduction..3

 What is programming?...3

Install Python..5

Variables... 8

 Python Data types names...8

Arithmetic operators...10

Examples...10

Math exercises...11

Decision making (branching)...12

Relational operators (to create conditions)...12

if statement...12

Example of if else...12

If else exercises... 13

Several choices -> several if-statements...13

Nested if-else statements.. 13

Logical operators.. 15

Loops.. 17

for-loop...17

 About random numbers..18

while loop...19

Break and continue statements... 19

Some special math operators.. 19

Arrays... 20

2 dimensional array...20

 Basic array algorithms...21

Functions.. 29

Introduction to functions...29

Function definition (implementation)...30

Learning by Examples..30

Passing by value or passing by reference... 33

1

Developing Python Apps

Introduction

What is programming?

We give instructions to the computer: set of instructions is a program.
Computer is mainly the processor that can understand machine code.
So our instructions are compiled to machine code so that it can be executed by
the computer.
A program contains
storages, data structures
functions, activities, operations
Programming languages
There are several programming languages, also for different purposes.
Here are the most used languages:
Java
Used in workstation and enterprise applications AND Android phones
It is also an Object Oriented Programming language (OOP)

C and C++
C is used in Embedded programming, games and so on
Procedural Programming language (not OOP!!)
C++
It is also an Object Oriented Programming language (OOP)
C++ is used in Game programming for different kinds of applications and for operating systems

C#
We use C# in this book. It is developed by Microsoft, used in ASP.NET, workstation software,
games etc.
 It is also an Object Oriented Programming language (OOP)

PHP
Used for web programming
JavaScript
Used for web programming

HTML
Web page contents markup language

Python
Used for different kinds of applications

SQL
Used for database queries

ObjectiveC
Used for IOS plattform

2

Assembler
It is a symbolic machine language

Take a look at the lists of programming languages. Here is for example a list of most popular
programming languages:
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

Next we take a look at our tool!
When you install Python to your machine, you get also Idle-tool.
There are several other tool, also: for example PyCharm is very popular.
Also, Jupyter Notebook is used a lot.

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

3

Install Python

Newest Python version is Python 3.13 (december, 2024).

Because we concentrate on basics, you can use also previous Python versions!
You can download Python e.g. from this place:

https://www.python.org/downloads/

AND then install Python:

Start Python: IDLE is the tool now.

https://www.python.org/downloads/

4

Start a new program

Save the new codefile and go on!

Let’s get to know a bit about Python tool!
Try first a pure console code:
print(”Hello, all!”)

Then choose Run

You get

5

Good!!

Let’s now start studying programming!!

6

Variables

Variables are storages used by the program. Memory for variables is allocated from computer’s
memory. That memory is called RAM (Random Access Memory) memory.

Variables have to be defined before they can be used.
In definition we need to tell data type and name of the variable.
Data type defines what kinds of values we can store to a variable:
Are they integers, e.g. values like 1, 20, 10000
Are they floating point (decimal) values, e.g. values like 2.35, 100.5555
Are they Characters, e.g. values like ‘a’, ‘4’
Are they boolean values, e.g. values like true, false
Are they texts (strings) , e.g. values like “Kokkola”, “USA”

Python Data types names

Booleans
Numbers
Strings
Bytes
Lists
Tuples
Sets
Dictionaries

Number types are int, float, and complex
Boolean types is bool
String type is str

We concentrate on types numbers, bytes and strings and booleans.

Examples of data types (function type tells the datatype)
a = 999999
b = 5.55555555555
c = 'x'
d = "Kokkola"
e = 2.33
f = 10
g = 300
h = 9000000000
i = 3000000000
j = 2 + 3j
k = True

print(a)
print(b)
print(c)
print(d)

7

print(e)
print(f)
print(g)
print(h)
print(i)
print(j)
print(k)

print(type(a))
print(type(b))
print(type(c))
print(type(d))
print(type(e))
print(type(f))
print(type(g))
print(type(h))
print(type(i))
print(type(j))
print(type(k))

We get

8

9

Arithmetic operators

Operator Explanation
+ Addition
- Subtraction
* Multiplication
% Remainder
/ Division
// Floor division
** Exponentiation

Examples

We get

10

Math exercises
1
Create a mini calculator
2
Our programs uses Ohm's law to calculate the resistance.
User gives voltage and current.

3
User gives the speed of the car (km/h) and the distance (km). Program calculates amount
of time.
a) in hours
b) in whole hours and minutes

4
Our program calculates BMI.

5
Create a euro converter: dollars to euros.

6
Convert seconds to hours, minutes, seconds.

7
Convert euros to 5, 10, 20, 50, 100, 200, 500 euros bills.

11

Decision making (branching)

Program flow is decided depending on the condition

Relational operators (to create conditions)

Operator Explanation
< Smaller than
<= Smaller than or equal to
> Bigger than
>= Bigger than or equal to
== Equal to
!= Not equal to

if statement

Syntax:
if this is true:
 this code is executed

Example
a = 5
if a != 5:
 print ("a is NOT 5!")

If several statements are executed after if, we use a program block that is created automatically
with indents:
if this is true :
 this code is executed
 and this code is executed
 and …

We can have else part, too:
if this is true:
 this code is executed
else:
 this code is executed

Example of if else

a = 5
if a != 5:
 print ("a is NOT 5!")
else:
 print ("a is 5!")

12

Example: program tells if given number is positive or not.

n = int(input("Give a whole number "))
if n >= 0:
 print ("is positive")
else:
 print("is negative")

We get

If else exercises
1
User gives a value and our program tells if the value is > 100

2
Write a program which reads two integer values.
If the first is less than the second, print the message "up".
If the second is less than the first, print the message "down ".
If the numbers are equal, print the message "equal".

3
User enters a weekday number and the program tells the name of the day.

4
User gives a month number and our program tells the number of days in that month.

5
User gives the lengths of the triangle's sides. Program tells what is the triangle
like and calculates the area of the triangle

Several choices -> several if-statements

n = int(input("Give a whole number "))

if n == 0:
 print ("zero")
elif n == 1:
 print ("one")
elif n == 2:
 print ("two")
else:
 print("other value")

We get

13

Nested if-else statements

Example: is given number between 1 and?
x = 5
if x >= 1:
 if x <= 5:
 print("x is between 1 and 5")
 else:
 print("x is NOT between 1 and 5")
else:
 print("x is NOT between 1 and 5")

We get

14

Logical operators
Operator Example
and int a = 5;

(a >= 0 && a <=10)
true

or (a < 0 || a > 10)
false

not

Example: is given value between 0 and 10?

// way 1

x = -3
if x >= 0:
 if x <= 10:
 print("x is between 0 and 10")
 else:
 print("x is NOT between 0 and 10")
else:
 print("x is NOT between 0 and 10")

// way 2

x = -3
if x >= 0 and x <= 10:
 print("x is between 0 and 10")
else:
 print("x is NOT between 0 and 10")

// way 3

x = -3
if x < 0 or x > 10:
 print("x is NOT between 0 and 10")
else:
 print("x is between 0 and 10")

Note: switch case is missing from Python

Program prints the name of a value (between 0 and 5) in Italian.

n = 3
if n == 0:
 print("zero")
elif (n == 1):
 print("uno")
elif n == 2:
 print("due");
elif n == 3:
 print("tre");
elif n == 4:
 print("quattro");
elif n == 5:
 print("cinque");

15

else:
 print("do not know");

We get
tre

16

Loops

We use loops for repeating some part of the code until some solution is found
A bit about program flow:
In programs execution flow can
a) go on straight forward (step by step)
b) contain decision making (branching)
c) contain loops

Examples of usages of loops:
when searching for a value from an array
when generating and printing hundreds of random numbers
in iterations

There are mainly two kinds of loops: for loop (when code is to be repeated fixed nnumber of time) and
while loop (called often conditional loop).

for-loop

syntax
for definition:
 body of the loop

Program flow:
go straight forward (step by step)
decision making (branching)
loops

Examples of using for loop
Example: print out values 1 to 5
#print values 0 to 5
for x in range(6):
 print(x)

Example: print out 4, 8, 12, … 24
#print values 4, 8, ... 24
for x in range(4, 24, 4):
 print(x)

#Program calculates the sum of values 1 - 5
sum = 0
for x in range(6):
 sum = sum + x

print(sum)

#Program calculates the sum of even numbers between 2 - 40
sum = 0
for x in range(2,42, 2):
 sum = sum + x

print(sum)
#Program calculates sum: 5, 10, 15, .. 100.
sum = 0

17

for x in range(5, 105, 5):
 sum = sum + x

print(sum)

 About random numbers
 How to get random numbers?
Random object is needed: we have to import random module.
Import random
Then we can e.g. method
random.randint(lower limit, upper limit)
to get random values.

Getting values between 1 and 10:
x = random.randint(1,11)

Example: generate random numbers

import random
#Program generates 50 random numbers (between 1 to 10)

for x in range(50):
 y = random.randint(1,11)
 print (y)

Counting amounts of different numbers
n1 = 0
n2 = 0
n3 = 0
n4 = 0
n5 = 0

for x in range(50):
 y = random.randint(1,11)
 if y == 1:
 n1 += 1
 elif y == 2:
 n2 += 1
 elif y == 3:
 n3 += 1
 elif y == 4:
 n4 += 1
 elif y == 5:
 n5 += 1
print("Amounts:")
print(n1)
print(n2)
print(n3)
print(n4)
print(n5)

We get
Amounts:
5
7
3

18

3
4

Conditional loops

while loop

Syntax:
while (condition is true):
 code

Examples of while loop
#while
print ("while loop example")
k = 1
while k < 6:
 print(k)
 k = k + 1

Break and continue statements

Used with loops
Note: break was used even with switch-case
With break
you can terminate the loop when some condition is true
E.g.
When searching for a value from an array by using a loop:
when the value is found, there no use to go on searching,
just terminate the loop with break statement!
With continue
you can start a new round without executing the code that exists below continue statement
Example of using break:

#equation: 3x^3 - 2x^2 + 4x -7 = 0
x = -5.0
y = 0.0

while True:
 y = 3*x**3 - 2*x**2 + 4*x -7
 if y > -0.001 and y < 0.001:
 break
 x += 0.0001

print(x)
print(y)

We get
1.191400000001571
7.293985086676003e-05

19

Some special math operators
Assignment and math operators combined:
+=
-=
*=
/=
%=

Example:
x = 10;
x += 5 # same as x = x + 5

Arrays
Normal variable can store only 1 value.
Array can store several values of same data type.
Note: Python has not real arrays, no built-in support for arrays, but we can use lists that
are almost similar than arrays in many other programming languages (
One dimensional array
Example: an array that can store 5 integers

10 55 0 222 789

values = [10, 55, 0, 222, 789]
Every place of an array has an index. The first index is 0.
Print (values[0])
Gives 10.

Python arrays have several methods that are used for handling array contents…

Method len() gives the size of an array.

Let's print all values

Result

2 dimensional array
Has rows and columns.
Example: Measures
1 2 3 4
122 132 99 96

20

measures = [[1,2,3,4],[122,132,99,96]]

Printing values

Result

How to initialize a 2 dimensional array?
Example here

About string lists: in comparing you can use here common operators == and !=.
Here is an example

Result

Basic array algorithms

Filling an array with random numbers
Calculate the sum and the average.

21

Searching for the minimun/maximum value
Checking if a specific value is in the table
Sorting an array
--
Filling with random numbers

Result

Minimun and maxmimun:
Principle:
Assign the first value of the table to some variable (e.g named min or max):
Then we check if there are smaller or bigger values in the remaining part of the array
If bigger or smaller value is found, it is assigned to min or max variable
Minimun:

22

We get

Maximun: this is one of the assignments!

Searching for a specific value

Principle:
Inside a loop we start comparing the value of array to the value we are searching for
If values are same
 add the position to some variable
 break the loop (no use to go on…)
After loop we can test the variable: if it has some positive value,
we can print that value was found
else
we print that it was not found
Code

Result

Sorting: We use here selection sort method (slow method, but good for demonstration)

Example table:
6 7 3 9 2 99

First we compare the first value to others value and swap values when needed:
1. round:
7 < 6? no
3 < 6? yes, swap

3 7 6 9 2 99

23

9 < 3? no
2 < 3? yes, swap
2 7 6 9 3 99

99 < 2? no

Code

24

Result

25

Contents
Functions .. 3

Introduction to functions ... 3

Function definition (implementation) ... 4

Learning by Examples .. 4

Passing by value or passing by reference ... 8

28

Functions

Introduction to functions

Functions are often called also subprograms, routines, procedures, methods…
Functions
do one well defined task
Instead of putting all the code the main body of the program, we can use
functions and call them when needed.

Why functions?
Can be called several times from other parts of the program
Can be reused in other programs
Program is better organized (better structure)
No need for repeating same code
SO, When some code is to be used more than once, it is good to create a function

29

Function definition (implementation)
def functionName(parameters):

function body (the code, implementation)

Learning by Examples

Example 1
Our function prints out “Good Morning”

def greet():
 print (“Good Morning”)

Function call
greet()

Test run

Result

Example 2
We want do decide ourselves what to print!

def myGreeting(message):
 print (message)

Test run

30

Result:

Example 3
We have had only 1 parameter – let's try with different kinds of function parameters now...

Example 4
Our function prints our greeting n times.

def myGreetingManyTimes(message, n):
 for i in range(5):
 print (message)

Test run

31

Result

Functions can also return values. Let's take a look at that feature.

Example 5
Next function returns the sum of 3 whole numbers.

def sumOf3(a, b, c):
 sum = a + b + c
 return sum

Note, we have return statement there!

Test run

Result

We can call that function also like this:

print (sumOf3(55,66,88))

OR

32

x = 10
y = 20
z = 20

print (sumOf3(x, y, z))

Example 6
Our function returns the perimeter of a circle when radius (a whole number) is passed to the
function

def perim(r):
 p = 2 * 3.14 * r
 return p

Test run

Result

Note: we could have taken the value of pi from math, but libraries are discussed later...

Passing by value or passing by reference

Here is an example where function has normal parameters. Values of are modified inside the
function but
original variables are not changed. This is called passing by value: only the value of the variable is
passed to the function and original variable cannot be modified by the function (function does not
an access to original memory place).

33

Example 7

Test run shows that values of x1 and x2 are not changed:

Arrays are passed to functions as references – they can be modified by the function.

Example 7
First we only print an array

34

Result

Example 8
Here arrays values are multiplied by 2. You can see that original array has changed.

def doubleArray (array):
 for i in range(len(array)):
 array[i] *= 2

Test run

35

AND

We return to functions even later.
This was part one...

	Introduction
	What is programming?

	Install Python
	Variables
	Python Data types names

	Arithmetic operators
	Examples
	Math exercises

	Decision making (branching)
	Relational operators (to create conditions)
	if statement
	Example of if else
	If else exercises
	Several choices -> several if-statements
	Nested if-else statements

	Logical operators
	Loops
	for-loop
	About random numbers
	while loop
	Break and continue statements

	Some special math operators
	Arrays
	2 dimensional array
	Basic array algorithms

	Functions
	Introduction to functions
	Function definition (implementation)
	Learning by Examples
	Passing by value or passing by reference

