

Basics in programming
with
Python

Free eBook
by Adam

Table of Contents

INETOAUCTION. ..ceeeiiteeetteeete ettt ettt e e sbe e e sttt esate e ssabeeesasaeesssseessssae s ssaessssaessnssaesnssaesnssaeensnnes 3
What iS PrOZIamMITIINE?.......veeiiiieieieeeeieeeeteeesteeestteesstaeeestaeessaeessseessseessssaeessseeessseesssseesssseesssseenssnes 3
INSAIl PYROM. ..couiiiiiiiiieeeeeee ettt st ettt e st e b e e st e e be e st e ebe e s st e enbeesabesnbaen 5
AV 10 F: 10 L= J OO O O OO O RRSP RS SRRSRRRR 8
Python Data tyPes MAIMES.ceceveeeeieeeirieeeieeeeieeeeteeesteesssseesssseessseesssseesssssesssssessssesssssssssssssssseeens 8
ATItNIMETIC OPETALOTS. ... eeeutieeieeieeiieeieertt e et et e et et e sbeesatesteesstessbeesstessseesssessseesssessseesssesseenssesnsennns 10
EXAMIPIES..c.nutiiiiieieteeeee ettt ettt e e st e e s te e e s e e e st e e e st e e e abae e s bae e tbeeeaaeeebaeenraeens 10
IMLath ©XEICISES. .. veeevreeeireeeieeeeiteeeteeesteeeeteeeesteeesseesssaeesssaeeassaeesssaesassaesnsseeessseesnsseeessseessssesssseeannes 11
Decision making (branching)..........ccceeriiiiiiiiiiiniieieeeeet ettt sie e s te e st e et e e sbeesneeeas 12
Relational operators (t0 create CONAITIONS).......eievurerriueeiriiiereiieerrieeesieeesreessreessseeessaeesseeessseessseennns 12
T STALEIMIENL. ...eeuvieetiecteeeie ettt e et ee e et eeteesbeestee e beeesseessse e saeeseeesseesssaaseeenseessssesssaensseasseeenseanns 12
EXAMPIE Of i €1SO....ceeiiiiieiiieeet ettt sttt e s b s b e ane e e 12
£ @1SE EXOTCISES. . ccuveeeureereeeiieeitieeteesiteste et estte e aeessseeteessseeseesssaessaessseesseesssaenssasssesnssesnseesseesssesnses 13
Several choices -> several if-StateImMENLS.ccveeiierieeiiieiieeie et et e e e eseeesreesreeereeseeeaeeseenns 13
Nested if-e1Se StAtEMENLS.cc.eiruirriirierterierteereet ettt ettt et satesie e bt e b et e et e saeesaeesbeebesasesnees 13
LLOGICAL OPETALOTS.viiiiieeiiieieiieeeite et e et e st e s ste e e saeeesbteesbaeessbaeesssaeessseeessseessseessaeessssesssseeensseenn 15
| o T0) TP PR PPP PRI 17
1(0) i (0 To] 0 OO OO O PR PPUPRRPPRR 17
ADbout randOmm NUITIDETS.coiiiiiiiiieeieecteeet ettt e e ae e s be e s sabeesssaeessaneessaeesasaessnseeenns 18
A4 011 (0 (0T] o USRS 19
Break and CONtiNUE STAtEIMENLS.eerutieriieriierieeeieerieesieesteesteettes st esabessssesseessseesstessseessseesssesnns 19
Some special Math OPETALOTS.......c.ueiiriiiiiiiieiieeeie ettt ste e e sbe e e bt essabeesaseessaaeessaeesssaesssseesnns 19
AATTAY S 1ttt teiitteeeeet et e ettt e ettt e e e et e e e e s tbae e e st te e e e s st e eeesasbaeeeasbeaeeeaaabaaeeea bt e eeeaa b taeeenataaeeenraaaeeenanraens 20
2 dIMENSIONAL AITAY...ccuviiiieiriieriieerieeie ettt et et e st e st e s teesae e st e e bt e sabeebaesabeessaesasesseesnseenseennns 20
Basic array algorithimiS.ciieiiiiniiiicieeeeeeeee ettt ettt e e s ar e e sabaeenas 21
FUNCHIONS. ..ttt e sttt e e st e e e s sttt e e e s abe e e e s asaaeesessstaeesnsssaaeessssaessnsssaesannns 29
Introduction t0 fUNCHOMNS.ceoviiiirieiirtertet ettt ettt st sb e st ebe st e saeesbesaeens 29
Function definition (implementation)..........ccceerueerierriienieeieereeeieeseeeteesreesaeeseeeseeesseessneesseesssens 30
Learning DY EXAIMPIES.......ccocciiiiiiiieiieeieeeetee ettt e tee e s iae e seeveessve e e e aaeessateeesssaeesnsseesnsseeennnes 30

Passing by value or passing by reference............coceeverieriiniininiinieeeeeeeee e 33

Developing Python Apps

Introduction

What is programming?

We give instructions to the computer: set of instructions is a program.
Computer is mainly the processor that can understand machine code.
So our instructions are compiled to machine code so that it can be executed by
the computer.

A program contains

storages, data structures

functions, activities, operations

Programming languages

There are several programming languages, also for different purposes.
Here are the most used languages:

Java

Used in workstation and enterprise applications AND Android phones
It is also an Object Oriented Programming language (OOP)

C and C++

C is used in Embedded programming, games and so on
Procedural Programming language (not OOP!!)

C++

It is also an Object Oriented Programming language (OOP)
C++ is used in Game programming for different kinds of applications and for operating systems

C#

We use C# in this book. It is developed by Microsoft, used in ASP.NET, workstation software,
games etc.

It is also an Object Oriented Programming language (OOP)

PHP

Used for web programming
JavaScript

Used for web programming

HTML
Web page contents markup language

Python
Used for different kinds of applications

SQL
Used for database queries

ObjectiveC
Used for 10S plattform

Assembler
It is a symbolic machine language

Take a look at the lists of programming languages. Here is for example a list of most popular
programming languages:
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

Next we take a look at our tool!

When you install Python to your machine, you get also Idle-tool.

There are several other tool, also: for example PyCharm is very popular.
Also, Jupyter Notebook is used a lot.

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

Install Python

Newest Python version is Python 3.13 (december, 2024).

Because we concentrate on basics, you can use also previous Python versions!
You can download Python e.g. from this place:

https://www.python.org/downloads/

Download the latest version for Windows

Download Python 3.13.1

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, macOS, Other
Want to help test development versions of Python 3.14? Pre-releases,

Docker images

AND then install Python:

5 Python 3.7.1 (64-bit) Setup - X

J Setup was successful

Special thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would

still be Python for DOS.
New to Python? Start with the online tutorial and
documentation.

See what's new in this release.

python

for

windows [cose |

Start Python: IDLE is the tool now.

B Python 37
K& IDLE (Python 3.7 64-bit)

» Python 3.7 (64-bit)

E? Pythor Launches IDLE, the interactive environment for Python 3.7,

Python 3.7 Module Docs (64-bit)

https://www.python.org/downloads/

[& Python 2.7.1 Shell - | *®

File Edit Shell Debug Options Window Help

Python 3.7.1 (v3.7.1l:260ec2c36a, Cct 20 2018, 14:57:15) [MsC
w.1815 €4 kit (AMDE4)] on win32

Type "help", "copyright", "credits" or "license ()" for more
information.

533 |

Ln:3 Cok4

Start a new program

" Untitled - Motepad

File Edit Format View Help
New Ctri+N
Open... Ciri+0
Save Ctrl+S
Save As...

Page Setup...
Print... Ctrl+P

Exit

Ln1, Col2

Save the new codefile and go on!

Let’s get to know a bit about Python tool!

Try first a pure console code:
print (”Hello, alll!”)

Then choose Run

| & *pl.py - C/Users/KaukoK/AppData/Local/Pregrams/Python/... — O >
File Edit Format Run Options Window Help
print ("Hello, Python Shell
Check Module Alt+X
Run Module F5
Ln: 1 Col 21

You get

| & Python 3.7.1 Shell O ¥
Eile Edit Shell Debug Options Window Help
RESTRET: C:/kk/PYTHONZO0ZO/al.py LS
Hello, all!
>33 | v
Ln: 16 Col: 4
Good!!

Let’s now start studying programming!!

Variables

Variables are storages used by the program. Memory for variables is allocated from computer’s
memory. That memory is called RAM (Random Access Memory) memory.

Variables have to be defined before they can be used.

In definition we need to tell data type and name of the variable.

Data type defines what kinds of values we can store to a variable:

Are they integers, e.g. values like 1, 20, 10000

Are they floating point (decimal) values, e.g. values like 2.35, 100.5555
Are they Characters, e.g. values like ‘a’, ‘4’

Are they boolean values, e.g. values like true, false

Are they texts (strings) , e.g. values like “Kokkola”, “USA”

Python Data types names

Booleans
Numbers
Strings
Bytes

Lists

Tuples

Sets
Dictionaries

Number types are int, float, and complex
Boolean types is bool
String type is str

We concentrate on types numbers, bytes and strings and booleans.

Examples of data types (function type tells the datatype)

a = 999999

b = 5.55555555555
c='X

d = "Kokkola"
e=2.33

f=10

g =300

h =9000000000
i = 3000000000
j=2+3]
k = True

print(a)
print(b)
print(c)
print(d)

print(e)
print(f)
print(g)
print(h)
print(i)
print(j)
print(k)

print(type(a))
print(type(b))
print(type(c))
print(type(d))
print(type(e))
print(type(f))
print(type(g))
print(type(h))
print(type(i))
print(type(j))
print(type(k))

We get

999999

5 .55h5K5KKELRLG

x

Kokkola

2.33

10

300

|0000000000
3000000000
(2+373)

True

<class 'int'>
<class '"float'>
<class 'str'>
<class 'str'>
<class '"float'>
<class 'int'>
<class 'int'>
<class 'int'>
<class 'int'>
<class 'complex'>
<class 'bool'>

Arithmetic operators

Operator Explanation

+ Addition

- Subtraction

* Multiplication
% Remainder

/ Division

// Floor division
*x Exponentiation
Examples

| & al.py - C:/kk/PYTHON2020/a1.py (3.7.1) - O =
File Edit Format Run Options Window Help
math operators

a=2>5

b =3

c=a + b

print (c)

¢ =a — b

print {c)

¢ =a % b

print (c)

¢ =a * b

print (c)

c = a/b

print (c)

Lm: 2 Colk 1

We get

8

2

2

15

1.6666666666666667

10

Math exercises

1

Create a mini calculator

2

Our programs uses Ohm's law to calculate the resistance.
User gives voltage and current.

3

User gives the speed of the car (km/h) and the distance (km). Program calculates amount
of time.

a) in hours

b) in whole hours and minutes

4
Our program calculates BMI.

5
Create a euro converter: dollars to euros.

6
Convert seconds to hours, minutes, seconds.

7
Convert euros to 5, 10, 20, 50, 100, 200, 500 euros bills.

Decision making (branching)

Program flow is decided depending on the condition

Relational operators (to create conditions)

Operator Explanation

< Smaller than

<= Smaller than or equal to
> Bigger than

>= Bigger than or equal to
== Equal to

1= Not equal to

if statement

Syntax:
if this is true:
this code is executed

Example
a=>5
ifal=5:
print ("a is NOT 5!")

If several statements are executed after if, we use a program block that is created automatically
with indents:
if this is true :

this code is executed

and this code is executed

and ...

We can have else part, too:
if this is true:

this code is executed
else:

this code is executed

Example of if else

a=>5
if al!l=5:

print ("a is NOT 5!")
else:

print ("ais 5!")

12

Example: program tells if given number is positive or not.

n = int(input("Give a whole number "))

if n>=0:
print ("is positive")
else:

print("is negative")

We get

Give a whole number 4
is positive

If else exercises
1
User gives a value and our program tells if the value is > 100

2

Write a program which reads two integer values.

If the first is less than the second, print the message "up".

If the second is less than the first, print the message "down ".
If the numbers are equal, print the message "equal".

3
User enters a weekday number and the program tells the name of the day.

4
User gives a month number and our program tells the number of days in that month.

5
User gives the lengths of the triangle's sides. Program tells what is the triangle
like and calculates the area of the triangle

Several choices-> several if-statements
n = int(input("Give a whole number "))

if n == 0:
print ("zero")
elif n == 1:
print ("one")
elif n == 2:
print ("two")
else:
print("other value")

We get

Give a whole number 2
two

Nested if-else statements

Example: is given number between 1 and?
X =5

if x >= 1:
if x <= 5:
print("x is between 1 and 5")
else:

print("x is NOT between 1 and 5")
else:
print("x is NOT between 1 and 5")

We get
¥ is between 1 and b

13

Logical operators

14

Operator Example

and int a = 5;
(a >= 0 && a <=10)
true

or (a<0@|] a>i0)
false

not

Example: is given value between © and 10?

// way 1
X = -3
if x >= 0:
if x <= 10:
print("x is between © and 10")
else:

print("x is NOT between @ and 10")
else:
print("x is NOT between © and 10")

// way 2

X = -3
if x >= @ and x <= 10:

print("x is between © and 10")
else:

print("x is NOT between © and 10")

// way 3

X = -3
if x < @ or x > 10:

print("x is NOT between © and 10")
else:

print("x is between © and 10")

Note: switch case is missing from Python

Program prints the name of a value (between © and 5) in Italian.

n=3

if n ==
print("zero")

elif (n == 1):
print("uno"

elif n ==
print("due");

elif n ==
print("tre");

elif n ==
print("quattro");

elif n ==
print("cinque");

else:
print("do not know");

We get
tre

15

Loops

We use loops for repeating some part of the code until some solution is found
A bit about program flow:

In programs execution flow can

a) go on straight forward (step by step)

b) contain decision making (branching)

c) contain loops

Examples of usages of loops:

when searching for a value from an array

when generating and printing hundreds of random numbers
in iterations

There are mainly two kinds of loops: for loop (when code is to be repeated fixed nnumber of time) and
while loop (called often conditional loop).

for-loop

syntax
for definition:
body of the loop

Program flow:

go straight forward (step by step)
decision making (branching)

loops

Examples of using for loop
Example: print out values 1 to 5
#print values © to 5
for x in range(6):

print(x)

Example: print out 4, 8, 12, .. 24

#print values 4, 8, ... 24
for x in range(4, 24, 4):
print(x)

#Program calculates the sum of values 1 - 5
sum = @
for x in range(6):

sum = sum + X

print(sum)

#Program calculates the sum of even numbers between 2 - 40
sum = 0
for x in range(2,42, 2):

sum = sum + X

print(sum)
#Program calculates sum: 5, 10, 15, .. 100.
sum = 0

16

for x in range(5, 105, 5):
sum = sum + X

print(sum)

About random numbers
How to get random numbers?

Random object is needed: we have to import random module.

Import random

Then we can e.g. method
random.randint(lower limit, upper limit)
to get random values.

Getting values between 1 and 10:
x = random.randint(1,11)

Example: generate random numbers

import random
#Program generates 50 random numbers (between 1 to 10)

for x in range(50):
y = random.randint(1,11)

print (y)
Counting amounts of different numbers
nl =0
n2 = 0
n3 =0
n4d = 0
n5 = 0

for x in range(590):
y = random.randint(1,11)

nl +=
elif y =
n2 +=
elif y
n3
elif y
n4 +=
elif y ==
n5 +=
print("Amounts:")
print(nl)
print(n2)
print(n3)
print(n4)
print(n5)

+
1
RPURDMRPRWRNEPR

We get
Amounts:
5

7

3

17

Conditional loops
while loop

Syntax:
while (condition is true):
code

Examples of while loop
#twhile
print ("while loop example")
k=1
while k < 6:

print(k)

k=k+1

Break and continue statements

Used with loops

Note: break was used even with switch-case

With break

you can terminate the loop when some condition is true
E.g.

When searching for a value from an array by using a loop:
when the value is found, there no use to go on searching,
just terminate the loop with break statement!

With continue

you can start a new round without executing the code that exists below continue statement
Example of using break:

#equation: 3x”3 - 2x"2 + 4x -7 = 0
X = -5.0
y = 0.0

while True:
y = 3¥x¥*3 - 2¥x*¥*2 4 4*x -7
if y > -0.001 and y < 0.001:
break
X += 0.0001

print(x)
print(y)

We get
1.191400000001571
7.293985086676003e-05

18

19

Some special math operators

Assignment and math operators combined:

+=
-
/=
%=
Example:
X = 10;

X +=5 # same as X = X + 5

Arrays

Normal variable can store only 1 value.

Array can store several values of same data type.

Note: Python has not real arrays, no built-in support for arrays, but we can use lists that
are almost similar than arrays in many other programming languages (

One dimensional array

Example: an array that can store 5 integers

10 | 55 | o | 222 789

values = [10, 55, O, 222, 789]

Every place of an array has an index. The first index is @.
Print (values[©])

Gives 10.

Python arrays have several methods that are used for handling array contents..

Method len() gives the size of an array.

Let's print all values

values = [10, 55, 0, 222, 789]

print

for 1 in range (len(values)):
print (values[i])

Result

10
55
0
222
789

2 dimensional array
Has rows and columns.
Example: Measures

1 2 3 4

122 132 99 96

measures = [[1,2,3,4],[122,132,99,96]]

Printing values

measures = [[1,2,3,4],[122,132,99,96]]
print
for 1 in range (len(measures)):
for j in range(len(measures[i])):
print (measures[i] [j], end='\t')

print ()
Result
1 2 3 4
122 132 99 96

How to initialize a 2 dimensional array?

Example here
personsAndSalaries = [["Bill", "2000"]1,["Ann", "2200"]1,

[”TDII.'I.”, rr3000rr]r [”JEI.C]C”, "1000"]]

for i in range(len(personsAndSalaries)):
for j in range(len(personsAndSalaries([i])):
print (personsAndSalaries[i] []])

About string lists: in comparing you can use here common operators == and !=.
Here is an example

c¢ities = ["Helsinki","Stockholm", "Oslo", "London"]
homeCity = "London"

for eity in cities:
1f homeCity == city:
print ("It is in the list")

Result
It is in the list

Basic array algorithms

Filling an array with random numbers
Calculate the sum and the average.

20

Searching for the minimun/maximum value
Checking if a specific value is in the table
Sorting an array

Filling with random numbers
import random

values = []
for i in range (20):
values.append (random.randint (0,100))

for 1 in range(20):
print (values[i])

print ("This is ok, too")
print (values)

Result
39

34

61

86

43

61

23

36

17

38

42

46

22

2

28

41

87

.

2

17
This is ok, too
[39, 34, 61, 86, 43, 61, 23, 36, 17, 38, 42, 46, 22, 2, 28, 41, 87, 7, 2, 171

Minimun and maxmimun:

Principle:

Assign the first value of the table to some variable (e.g named min or max):

Then we check if there are smaller or bigger values in the remaining part of the array
If bigger or smaller value is found, it is assigned to min or max variable

Minimun:

min values[0]
for i1 in range(1l,20):
if wvalues[i] < min:
min = values[i]
print("Smallest wvalue is ", min)

21

We get

22

[41, 99, 61, 4, 81, 47, 91, 55, 51, 92, 45, 11, 74, 60, 44, 7, 57, 59, 57, 47]

Smallest wvalue is 4

Maximun: this is one of the assignments!
Searching for a specific value

Principle:
Inside a loop we start comparing the value of array to the value we are searching for
If values are same
add the position to some variable
break the loop (no use to go on...)
After loop we can test the variable: if it has some positive value,
we can print that value was found

else
we print that it was not found
Code
toBeFound = 22
result = "Not found"
for 1 in range(l,20):
if wvalues[i]== toBeFound:
result = "found in position ", i;
break;

print (result)

Result

Not found
>

('found in position ', 18)

Sorting: We use here selection sort method (slow method, but good for demonstration)

Example table:

(87, 42, 49, 7, 67, 33, 51, 57, 86, 97, 88, 30, 67, 29, 14, 43, 78, 26, 71,

RESTART: C:/python37/array5.py =======
2rmn 29 4, 28, 48, 0, 5, 35, 60, 5, 84, 90, 7, 90, 65, 15, 56, 31, 81, 22, 80]

[6 | 7 [3 [9 [2 | 99

First we compare the first value to others value and swap values when needed:
1. round:

7 <6?no

3 <67 yes, swap

[3 | 7 | 6 9 2 99

9<3?no
2 < 3? yes, swa

23

[2 7 | 6 [9 [3

99 < 2? no
Code

import random

values = [3,7,6,9,2,99]

for i1 in range(6):

for 7 in range(i+l,6):
if wvalues[i] > wvalues[]]:

temp = values[i]
values[i] = wvalues[]]
values[j] = temp

print (values)

Result
[2,

24

25

Contents

FUNCHIONS teiiiiiiiiieiiiiiieiiieiiee ittt ettt ettt et ettt et ettt eeiteeeeaaite et eeannteeeeeannteeeennnneeeeeas 3
Introduction t0 fUNCHONS.eeeueeitiiiiiiiieiteeeie et 3
Function definition (implementation)..........c.eeeeeeisieiiieiiieiieiieeiieieeseeee e e e e e 4
Learning DY EXamPIeS.eeeueiiieiiiiiiiiiiiiiie ittt 4

Passing by value Or PaSSINgG DY T OreICe. .uu et eeeeeeeeeeeeeeeeeesereseeeeeseeeseeeeeeeeeeeererereeensensenes 8

Functions

Introduction to functions

Functions are often called also subprograms, routines, procedures, methods...
Functions

do one well defined task

Instead of putting all the code the main body of the program, we can use
functions and call them when needed.

Why functions?

Can be called several times from other parts of the program

Can be reused in other programs

Program is better organized (better structure)

No need for repeating same code

SO, When some code is to be used more than once, it is good to create a function

28

Function definition (implementation)
def functionName(parameters):
function body (the code, implementation)

Learning by Examples

Example 1
Our function prints out “Good Morning”
def greet():

print (“Good Morning”)
Function call
greet()
Test run

| & funcl.py - C/kk/PYTHON2020/funcl.py (3.6.6) — O X

File Edit Format Run Options Window Help

def greet():

print ("Good Morning")
#call
greet ()
Ln: 7 Cok0

Result

Good Morning

Example 2
We want do decide ourselves what to print!

def myGreeting(message):
print (message)

Test run

29

| & func2.py - C/kk/PYTHON2020/func2.py (3.6.6) - O X
Eile Edit Format BRun Options Window Help
def myGreeting(message) :

print (message)

#call
myGreeting ("Hello")

Lm: 7 Colk0

Result:

Hello

Example 3

We have had only 1 parameter — let's try with different kinds of function parameters now...

Example 4
Our function prints our greeting n times.

def myGreetingManyTimes(message, n):
for i in range(5):

print (message)

Test run

| & func3.py - C/kk/PYTHON2020/func3.py (3.6.6) — O X
File Edit Format Run Options Window Help
def myGreetingManyTimes (message, n):
for i in range(5):
print (message)

#call
myGreetingManyTimes ("Hello", 5)

Ln: & Cok0

30

Result

Hello
Hello
Hello
Hello
Hello

Functions can also return values. Let's take a look at that feature.

Example 5

Next function returns the sum of 3 whole numbers.

def sumOf3(a, b, c):
sum=a+b+c
return sum

Note, we have return statement there!

Test run

Lj; funcd.py - C/kk/PYTHOMN2020/funcd.py (3.6.6)
Eile Edit Format BRun Options Window Help
def sumOf3(a, b, c):

sum = a + b + c

return sum

#call
result = sumOf3(22,33,44)
print (result)

Lm:9 Cok0O

Result
99

We can call that function also like this:
print (sumOf3(55,66,88))

OR

31

x =10
y =20
z =20

print (sumOf3(x, y, z))

Example 6

Our function returns the perimeter of a circle when radius (a whole number) is passed to the

function
def perim(r):

p=2*314*r
return p

Test run

| & funcs.py - C/kk/PYTHON2020/funcS.py (3.6.6) - O >
Eile Edit Format BRun Options Window Help

our function returns the perimeter

of a circle when radius (a whole

number) is passed to the function

def perim(r):
p=2 % 3.14 * r
return p

#call
result = perim(10)
print (result)

Ln: 13 Cok 0

Result
62 .80000

Note: we could have taken the value of pi from math, but libraries are discussed later...

Passing by value or passing by reference

Here is an example where function has normal parameters. Values of are modified inside the

function but

32

original variables are not changed. This is called passing by value: only the value of the variable is
passed to the function and original variable cannot be modified by the function (function does not

an access to original memory place).

Example 7

| & funcb.py - Ci/kk/PYTHON2020/funcé.py (3.6.6) —
File Edit Format Run Options Window Help

passing by value example
def addlO(s, t):

s += 10

t += 10

#call

x1 = 100

x2 = 3

print (x1, x2)

add10 (x1,x2)
print (x1, x2)

Ln: 13 Col 0

Test run shows that values of x1 and x2 are not changed:

100 3
100 3

Arrays are passed to functions as references — they can be modified by the function.

Example 7
First we only print an array

33

Lg!} func?.py - C/kk/PYTHOMN2020/funcT.py (3.6.6)

Eile Edit Format BRun Options Window Help

def printArray (array):
for i in range(len(array)):
print (array([i])

values = [22,33,55,1,888]
print ("Original wvalues'")
printArray (values)

Lm:9 Cok0O

Result

Original wvalues
22

33

55

1

888

Example 8

Here arrays values are multiplied by 2. You can see that original array has changed.

def doubleArray (array):
for i in range(len(array)):
array[i] *= 2

Test run

34

| & funcB.py - C/kk/PYTHON2020/funcs.py (3.6.6) - O >
Eile Edit Format BRun Options Window Help
def printArray (array):
for i in range(len(array)):
print (array([i])

def doubleArray (array):
for i in range(len(array)):
array[i] *= 2

values = [22,33,55,1,888]
print ("Original wvalues")
printArray (values)

doubleArray (values)
print ("Modified wvalues")
printArray (values)

Ln: 16 Col 0

AND

Original wvalues
22

33

55

1

888

Modified wvalues
44

66

110

2

1776

We return to functions even later.
This was part one...

	Introduction
	What is programming?

	Install Python
	Variables
	Python Data types names

	Arithmetic operators
	Examples
	Math exercises

	Decision making (branching)
	Relational operators (to create conditions)
	if statement
	Example of if else
	If else exercises
	Several choices -> several if-statements
	Nested if-else statements

	Logical operators
	Loops
	for-loop
	About random numbers
	while loop
	Break and continue statements

	Some special math operators
	Arrays
	2 dimensional array
	Basic array algorithms

	Functions
	Introduction to functions
	Function definition (implementation)
	Learning by Examples
	Passing by value or passing by reference

