
1

Algorithms
Collection

Free ebook by
Adam Higherstein

2

Algorithms
Collection

Free ebook by
Adam Higherstein

Main contents
Approximations
Biggest of 3
Bit operations
Dijkstra path finding
Bin packing
Pascal triangle
Recursive functions
Statistics
Ford-Fulkerson path finding
DSP & FFT
Insertion sort
Quick sort
Shell sort
Selection sort

3

Approximations

PI

Help functions

Approximation of PI

4

Approximations

PI

Help functions

5

Approximations PI

https://alchetron.com/Madhava-of-Sangamagrama

https://alchetron.com/Madhava-of-Sangamagrama

6

Approximations PI

https://alchetron.com/Madhava-of-Sangamagrama

https://alchetron.com/Madhava-of-Sangamagrama

7

Approximations PI

https://alchetron.com/Madhava-of-Sangamagrama

https://alchetron.com/Madhava-of-Sangamagrama

8

Approximations PI

9

Approximations PI

10

Approximations PI

11

Approximations PI

12

Approximations PI

13

Approximations PI

14

Kakelino
Biggest of 3
values?

Decision
tree?

Biggest of 3

15

Kakelino

Biggest of 3
values?
Way 1

Biggest of 3

16

Kakelino

Biggest of 3
values?
Way 2

17

Kakelino

Biggest of 3
values?
Way 3

18

Bit operations

Bit operations

19

Bit operations

20

Bit operations

21

Bit operations

22

Bit operations

23

Bit operations

24

Bit operations

25

Bit operations Checking the state of a bit

26

Bit operations Checking the state of a bit

27

Bit operations Checking the state of a bit

28

Bit operations

Inverting a bit

29

Bit operations

Inverting a bit

30

Bit operations

If XOR is missing

31

Try examples!

Check also 7 segment
example!

32

Edsger Dijkstra
shortest routes demo

This is fre
e!

Dijkstra

33

Edsger Dijkstra
shortest routes demo

Dijkstra Example
Shortest routes from Le Mans to other cities!

Map of France is here:

Blue circles are cities. We start from Le Mans.

34

Edsger Dijkstra
shortest routes demo

35

Edsger Dijkstra
shortest routes demo

36

Edsger Dijkstra
shortest routes demo

37

Edsger Dijkstra
shortest routes demo

38

Edsger Dijkstra
shortest routes demo

39

Edsger Dijkstra
shortest routes demo

Try to simulate it!

40

Bin packing
First fit method

Travelling groups: whole
group has to have room

in a bus

20 persons can take room in a bus

Bin packing

41

Code School
Bin packing

First fit method

Here are passenger
groups
11 groups

42

Code School
Bin packing

First fit method

First group has
8 persons:
put persons to bus 1

BUS 1

43

Code School
Bin packing

First fit method

Second group has
7 persons:
put persons to bus 1, too

BUS 1

44

Code School
Bin packing

First fit method

3. group has
14 persons:
put persons to bus 2

BUS 2

45

Code School
Bin packing

First fit method

4. group has
9 persons:
put persons to bus 3

BUS 3

46

Code School
Bin packing

First fit method

5. group has
6 persons:
put persons to bus 2, too

BUS 2

47

Code School
Bin packing

First fit method

6. group has
9 persons:
put persons to bus 3, too

BUS 3

48

Code School
Bin packing

First fit method

7. group has
5 persons:
put persons to bus 1, too

BUS 1

49

Code School
Bin packing

First fit method

8. group has
15 persons:
put persons to bus 4

BUS 4

50

Code School
Bin packing

First fit method

9. group has
6 persons:
put persons to bus 5

BUS 5

51

Code School
Bin packing

First fit method

10. group has
7 persons:
put persons to bus 5, too

BUS 5

52

Code School
Bin packing

First fit method

11. group has
8 persons:
put persons to bus 6

BUS 6

53

Code School

https://en.wikipedia.org/wiki/Pascal%27s_triangle

Pascal Triangle

https://en.wikipedia.org/wiki/Pascal%27s_triangle

54

Code School

https://en.wikipedia.org/wiki/Pascal%27s_triangle

https://en.wikipedia.org/wiki/Pascal%27s_triangle

55

Code School
We add first coefficients
to an array – first we create an
array that contains zeroes:

56

Code School
We add first coefficients
to an array…
We add there the first 1

57

Code School
We add first coefficients
to an array…

58

Code School
Print first with zeroes

59

Code School
Adjust printing:

60

Code School
Adjust printing:

61

Recursive functions

62

Kakelino’s Code School

Recursive functions

Functions that call themselves.

Function instances are created to RAM memory (stack)

There has to be a condition that stops running.

When all runs have been done, all function instances are
deconstructed.

63

Kakelino’s Code School

Recursive functions

Factorial

Factorial(0) is 1
Factorial(1) is 1
Factorial(n) = n * Factorial(n-1)

64

Kakelino’s Code School

Recursive functions

Factorial

Factorial(0) is 1
Factorial(1) is 1
Factorial(n) = n * Factorial(n-1)

int factorial(int n)

{

if (n == 0 || n == 1)

 return 1;

else

 return n * factorial(n-1);

}

65

Kakelino’s Code School

Recursive functions

int factorial(int n)

{

if (n == 0 || n == 1)

 return 1;

else

 return n * factorial(n-1);

}

Simulation (what function instances are created)
n is now 4
function call is factorial(4)

1. run: 4 * factorial(3)
2. run: 3 * factorial(2)
3. run: 2 * factorial(1)
4. run: 1 * factorial(0)

Deconstruction:
from run 4 we get 1*1 = 1
from run 3 we get 2*1 = 2
from run 2 we get 3*2 = 6
from run 1 we get 4*6 = 24

66

Kakelino’s Code School

Recursive functions

67

Kakelino’s Code School

Recursive functions

68

Kakelino’s Code School

Recursive functions

To illustrate simulation
some additions!

Variable sum (Fibonacci) is
incremented twice after last
print…

69

Kakelino’s Code School

Recursive functions

70

Kakelino’s Code School

Recursive functions

71

Code School
Statistics

Combinations
formula is

n = whole population
k = sample

72

Code School
Statistics

Combinations
formula is

n = whole population
k = sample

Example
we have 4 students
how many different pairs can we form
n = 4
k = 2
n! = 1*2*3*4 = 24
k! = 1*2 = 2
(n-k)! = (4-2)! = 2! = 2
Combinations = 24/2*2 = 6

73

Code School
Statistics

Example
we have 4 students
how many different pairs can we form
n = 4
k = 2
n! = 1*2*3*4 = 24
k! = 1*2 = 2
(n-k)! = (4-2)! = 2! = 2
Combinations = 24/2*2 = 6

What are those combinations?
If students are A,B,C and D,
We get
A B
A C
A D
B C
B D
C D
6 possible pairs!

74

Code School
Statistics

75

Code School
Statistics

Test run:

76

Code School
Statistics

77

Code School
Statistics

Regression

Excel gives
this result

78

Code School
Statistics

Regression

Java code:

79

Code School
Statistics

Regression

Java code:

80

Code School
Statistics

Regression

Java code:

Code gives
these results

81

Code School
Statistics

Regression

Code gives
these results

We use
values in
Excel

82

Code School
Statistics

Regression

We use
values in
Excel

Regression line
looks like this

83

Code School
Statistics

Regression

Here we have
points and the
line

84

Code School
Statistics

Regression

Here points and
line are shown by
Python

85

Code School
Statistics

Regression

Here points and
line are shown by
Python

Code

86

Ford-Fulkerson
Simulation

Kakelino’s Code School

This i
s fr

ee!

87

Ford-Fulkerson
Simulation

A B

C

D

E

F

9

4

3

3

5

2

4

7

3

88

Ford-Fulkerson
Simulation

A B

C

D

E

F

9

4

3

3

5

2

4

7

3

89

Ford-Fulkerson
Simulation

90

Ford-Fulkerson
Simulation

91

Ford-Fulkerson
Simulation

92

Ford-Fulkerson
Simulation

93

Ford-Fulkerson
Simulation

94

Ford-Fulkerson
Simulation

95

Ford-Fulkerson
Simulation

96

Ford-Fulkerson
Simulation

97

Ford-Fulkerson
Simulation

98

Ford-Fulkerson
Simulation

99

Ford-Fulkerson
Simulation

100

Ford-Fulkerson
Simulation

101

Ford-Fulkerson
Simulation

102

Kakelino’s Code School DSP & FFT

Main sources
https://www.dspguide.com
Chapter 12 is excellent here

https://www.dspguide.com/
https://www.dspguide.com/

103

Kakelino’s Code School DSP & FFT
Main sources
https://www.dspguide.com
Chapter 12 is excellent here
Wikipedia

https://www.dspguide.com/
https://www.dspguide.com/

104

DFT

105

DFT

Example

106

DFT

Example

X(k) can be now 1, 3/4, 1/2, 1/4

Transformation formula is

107

DFT Example

X(k) can be now 1, 3/4, 1/2, 1/4

Transformation formula is

108

DFT Example

X(k) can be now 1, 3/4, 1/2, 1/4

Transformation formula is

Value that is corresponding fo X(0) can be calculated
like this

109

DFT Example

X(k) can be now 1, 3/4, 1/2, 1/4

Transformation formula is

Value that is corresponding fo X(0) can be calculated
like this

Other values can be calculated in the same way

110

DFT Example X(k) can be now 1, 3/4, 1/2, 1/4

Value that is corresponding fo X(0) can be calculated
like this

Other values can be calculated in the same way

Common formula is then

111

DFT Example X(k) can be now 1, 3/4, 1/2, 1/4

Common formula is then

112

DFT Example X(k) can be now 1, 3/4, 1/2, 1/4

The final formula is

Imag.unit is only in the exponent

113

DFT Example X(k) can be now 1, 3/4, 1/2, 1/4

The final formula is

Imag.unit is only in the exponent

114

C++ code first

115

DFT

C# code

116

DFT

117

DFT using FFT
C++ code first

Part 1

118

DFT using FFT
C++ code first

Part 2

119

DFT using FFT
C++ code first

Part 3

120

DFT using FFT
C++ code first

Part 4

121

DFT using FFT
C#

Part 1,
FFT function

122

DFT using FFT
C#

Part 2,
SWAP bits function

123

DFT using FFT
C#

Part 3,
Start testing

124

DFT using FFT
C#

Part 3,
Start testing

125

DFT using FFT
C#

TEST run

C++ program results are same

126

DFT

One idea was to test how C# handles complex values

Another thing was to test
Wikipedias pseudocodes

Third thing was to wonder why FFT is faster than
common Brute force algorithm

Thank You!

127

Insertion Sort

29 10 14 37 13

Dusty Road

Jingle Punks

YouTube Audio Library

Country & Folk

81.29318

128

Insertion Sort

29 10 14 37 13

Start from the right side
Now there is value 10
Copy the value
Find the right place: if there are bigger
ones on the right, move them to the left,
Until you reach the beginning of the array
or there is smaller value than 10.
Add value 10 to found new place!

129

Insertion Sort

29 10 14 37 13

Start from the right side
Now there is value 10
Copy the value
Find the right place: if there are bigger
ones on the right, move them to the left,
Until you reach the beginning of the array
or there is smaller value than 10.
Add value 10 to found new place!

29 10 14 37 13

Copy 10

130

Insertion Sort

29 10 14 37 13

Start from the right side
Now there is value 10
Copy the value
Find the right place: if there are bigger
ones on the right, move them to the left,
Until you reach the beginning of the array
or there is smaller value than 10.
Add value 10 to found new place!

29 10 14 37 13

Move 29 to
the right

131

Insertion Sort

29 10 14 37 13

Start from the right side
Now there is value 10
Copy the value
Find the right place: if there are bigger
ones on the right, move them to the left,
Until you reach the beginning of the array
or there is smaller value than 10.
Add value 10 to found new place!

29 29 14 37 13

Move 29 to
the right

132

Insertion Sort

29 10 14 37 13

Start from the right side
Now there is value 10
Copy the value
Find the right place: if there are bigger
ones on the right, move them to the left,
Until you reach the beginning of the array
or there is smaller value than 10.
Add value 10 to found new place!

10 29 14 37 13

Add 10 to
the beginning

133

Insertion Sort

29 10 14 37 13

10 29 14 37 13

Choose next one,
there is 14

134

Insertion Sort

29 10 14 37 13

10 29 14 37 13

Copy the value

135

Insertion Sort

29 10 14 37 13

10 29 29 37 13

Move 29 to the
right

136

Insertion Sort

29 10 14 37 13

10 14 29 37 13

Add 14 to its
place

137

Insertion Sort

29 10 14 37 13

10 14 29 37 13

Now, 37

138

Insertion Sort

29 10 14 37 13

10 14 29 37 13

Copy 37

139

Insertion Sort

29 10 14 37 13

10 14 29 37 13

There are no
bigger ones on the
left side

140

Insertion Sort

29 10 14 37 13

10 14 29 37 13

Leave 37 to its
original place

141

Insertion Sort

29 10 14 37 13

10 14 29 37 13

Last value, 13

142

Insertion Sort

29 10 14 37 13

10 14 29 37 13

Copy 13

143

Insertion Sort

29 10 14 37 13

10 14 29 37 13

Copy 13New place will
be here!

144

Insertion Sort

29 10 14 37 13

10 14 29 37 13

Copy 13
New place will be
here! So, these values have to be

moved to the right

145

Insertion Sort

29 10 14 37 13

10 14 14 29 37

Move value 14,
29 and 37 to the
right

146

Insertion Sort

29 10 14 37 13

10 13 14 29 37

Add 13

147

Insertion Sort

29 10 14 37 13

10 13 14 29 37

Ready!

148

Insertion Sort

29 10 14 37 13

10 13 14 29 37

How efficient is this algorithm?
Time complexity,
T(n) = O(n^2),
where n is array size.
When n grows, elapsed running
time follows function f(n^2).

149

Java code

150

Java code:
test

151

Quick Sort

4 2 3 1 4 1 8 7 6 5

Easy learning, pale info in a
nutshell!

Green Leaf Stomp

Jingle Punks

YouTube Audio Library

Country & Folk

75.415054

Down 'N Dirty

Jingle Punks

YouTube Audio Library

R&B & Soul

86.88393

152

Quick Sort

1) Find the pivot value

4 2 3 1 4 1 8 7 6 5

153

Quick Sort

1) Find the pivot value
* it can be first value
* it can be the median
* it is good choose the median of 3
values: first, last, middle

4 2 3 1 4 1 8 7 6 5

154

Quick Sort

1) Find the pivot value
* it can be first value
* it can be the median
* it is good choose the median of 3
 values: first, last, middle

Now, let’s use median!

4 2 3 1 4 1 8 7 6 5

155

Quick Sort

1) Find the pivot value
* it can be first value
* it can be the median
* it is good choose the median of 3
 values: first, last, middle

Now, let’s use median!

4 2 3 1 4 1 8 7 6 5

Excel gives median 4.

156

Quick Sort

1) Find the pivot value
* it can be first value
* it can be the median
* it is good choose the median of 3
 values: first, last, middle

SO, first pivot value is 4

4 2 3 1 4 1 8 7 6 5

157

Quick Sort

SO, now we divide our array to 2 parts: values that are
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5

158

Quick Sort

SO, now we divide our array to 2 parts: values that are
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5

4 2 3 1 4 1 8 7 6 5

159

Quick Sort

SO, now we divide our array to 2 parts: values that are
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5

4 2 3 1 4 1 8 7 6 5

New pivot values: 3 and 6

160

Quick Sort

SO, now we divide our array to 2 parts: values that are
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5

4 2 3 1 4 1Pivot is 3

2 1 1 4 3 4

161

Quick Sort

SO, now we divide our array to 2 parts: values that are
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5

8 7 6 5Pivot is 6

8 7 65

8 76

Pivot is 7

162

Quick Sort

SO, now we divide our array to 2 parts: values that are
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5

4 2 3 1 4 1Pivot is 3

2 1 1 4 3 4

1 1 2

Pivot is 2
4 43

Pivot is 4

163

Quick Sort

Now, we sort all partial arrays and combine them to form a sorted array!

4 2 3 1 4 1 8 7 6 5

164

Quick Sort
4 2 3 1 4 1 8 7 6 5

Code

165

Quick Sort

4 2 3 1 4 1 8 7 6 5

Test run

166

Quick Sort

Sorting time
example

10 millions values
-> 2 seconds!

167

Kakelino’s Code School

Shell Sort

Simulating sorting methods

This i
s f

ree!

168

Kakelino’s Code School

Shell Sort

20 30 5 9 2 0 22

Shell sort is a slow sorting method but it is normally faster
than selection sort:
* many comparisons and swappings but no so many as in selection sort
* now we compare elements using distances

Now we are going to simulate shell sort!

169

Kakelino’s Code School

20 30 5 9 2 0 22

Definition of this array can be like this:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Shell Sort

170

Kakelino’s Code School

20 30 5 9 2 0 22

Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 1:
First distance between elements that are compared to each other
is normally size of the array divided by:
now it is 7/2 and we can round it to be 3.
We want to find the smallest value and add it to the beginning of this
array.
SO, the first value is now 20, place is values[0].
Now we compare 20 to the value that is 3 places from place 0,
and it is place 3 and there we have value 2.

Shell Sort

171

Kakelino’s Code School

20 30 5 9 2 0 22

Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 1:
SO, let’s go on:
2 < 20?
Yes, we swap values and get:

2 30 5 9 20 0 22

Shell Sort

172

Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 1 goes on:
We go on with value 30 now:
0 < 30?
Yes, values are swapped and we get

2 30 5 9 20 0 22

2 0 5 9 20 30 22

Shell Sort

173

Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 1 goes on:
We go on with value 2 now:
22 < 5?
No, we do nothing
So, after 1. round we have situation:

2 0 5 9 20 30 22

2 0 5 9 20 30 22

Shell Sort

174

Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 2:
Distance is now 3/2, we round it to 2
9 < 2?
No
20 < 0?
No
30 < 5?
No
22 < 9?
No

2 0 5 9 20 30 22

Shell Sort

175

Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 3: distance is now 1
5 < 2?
No
9 < 0?
No
20 < 5?
No
30 < 9?
No
22 < 20?

2 0 5 9 20 30 22

Shell Sort

176

Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 4: distance is now 0
0 < 2?
Yes

2 0 5 9 20 30 22

0 2 5 9 20 30 22

5 < 2?
9 < 5?
20 < 9?
30 < 20?
22 < 30?
Yes, swapping

Shell Sort

177

Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

That’s is!

Array is sorted!

0 2 5 9 20 22 30

Shell Sort

178

Kakelino’s Code School

Here is c code:

Shell Sort

179

Kakelino’s Code School

Let’s try using different input sizes
Here is c code
a) filling array

Shell Sort

180

Kakelino’s Code School

Let’s try using different input sizes
Here is c code
b) taking execution time

Shell Sort

181

Kakelino’s Code School

Selection Sort

Execution times as a diagram

182

Thank You!

Give feedback!

This ebook copy is free!

	Code School
	Slide 2
	Code School (2)
	Code School (3)
	Code School (4)
	Code School (5)
	Code School (6)
	Code School (7)
	Code School (8)
	Code School (9)
	Code School (10)
	Code School (11)
	Code School (12)
	Code School (13)
	Code School (14)
	Code School (15)
	Code School (16)
	Code School (18)
	Code School (19)
	Code School (20)
	Code School (21)
	Code School (22)
	Code School (23)
	Code School (24)
	Code School (25)
	Code School (26)
	Code School (27)
	Code School (28)
	Code School (29)
	Code School (30)
	Code School (31)
	Code School (34)
	Code School (35)
	Code School (36)
	Code School (37)
	Code School (38)
	Code School (39)
	Code School (40)
	Code School (41)
	Code School (44)
	Code School (45)
	Code School (46)
	Code School (47)
	Code School (48)
	Code School (49)
	Code School (50)
	Code School (51)
	Code School (52)
	Code School (53)
	Code School (54)
	Code School (55)
	Code School (56)
	Code School (59)
	Slide 54
	Code School (60)
	Code School (61)
	Code School (62)
	Code School (63)
	Code School (64)
	Code School (65)
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Code School (68)
	Code School (69)
	Code School (70)
	Code School (71)
	Code School (72)
	Code School (73)
	Code School (74)
	Code School (75)
	Code School (76)
	Code School (77)
	Code School (78)
	Code School (79)
	Code School (80)
	Code School (81)
	Code School (82)
	Ford-Fulkerson
	Ford-Fulkerson Simulation
	Ford-Fulkerson Simulation (2)
	Ford-Fulkerson Simulation (3)
	Ford-Fulkerson Simulation (4)
	Ford-Fulkerson Simulation (5)
	Ford-Fulkerson Simulation (6)
	Ford-Fulkerson Simulation (7)
	Ford-Fulkerson Simulation (8)
	Ford-Fulkerson Simulation (9)
	Ford-Fulkerson Simulation (10)
	Ford-Fulkerson Simulation (11)
	Ford-Fulkerson Simulation (12)
	Ford-Fulkerson Simulation (13)
	Ford-Fulkerson Simulation (14)
	Ford-Fulkerson Simulation (15)
	DSP & FFT
	DSP & FFT (2)
	DFT
	DFT (2)
	DFT (3)
	DFT (4)
	DFT (5)
	DFT (6)
	DFT (7)
	DFT (8)
	DFT (9)
	DFT (10)
	Slide 114
	DFT (11)
	DFT (12)
	DFT using FFT C++ code first
	DFT using FFT C++ code first (2)
	DFT using FFT C++ code first (3)
	DFT using FFT C++ code first (4)
	DFT using FFT C#
	DFT using FFT C# (2)
	DFT using FFT C# (3)
	DFT using FFT C# (4)
	DFT using FFT C# (5)
	DFT (13)
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Kakelino’s Code School
	Kakelino’s Code School (2)
	Kakelino’s Code School (3)
	Kakelino’s Code School (4)
	Kakelino’s Code School (5)
	Kakelino’s Code School (6)
	Kakelino’s Code School (7)
	Kakelino’s Code School (8)
	Kakelino’s Code School (9)
	Kakelino’s Code School (10)
	Kakelino’s Code School (11)
	Kakelino’s Code School (12)
	Kakelino’s Code School (13)
	Kakelino’s Code School (14)
	Kakelino’s Code School (15)
	Slide 182

