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Main contents
Approximations
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Bit operations
Dijkstra path finding
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Pascal triangle
Recursive functions
Statistics
Ford-Fulkerson path finding
DSP &  FFT
Insertion sort
Quick sort
Shell sort
Selection sort



3

Approximations

PI

Help functions

Approximation of PI
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Approximations

PI

Help functions



5

Approximations PI

https://alchetron.com/Madhava-of-Sangamagrama

https://alchetron.com/Madhava-of-Sangamagrama
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Approximations PI

https://alchetron.com/Madhava-of-Sangamagrama

https://alchetron.com/Madhava-of-Sangamagrama
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Approximations PI

https://alchetron.com/Madhava-of-Sangamagrama

https://alchetron.com/Madhava-of-Sangamagrama
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Approximations PI
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Approximations PI
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Approximations PI
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Approximations PI
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Approximations PI
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Approximations PI
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Kakelino
Biggest of 3 
values?

Decision 
tree?

Biggest of 3
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Kakelino

Biggest of 3 
values?
Way 1

Biggest of 3
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Kakelino

Biggest of 3 
values?
Way 2
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Kakelino

Biggest of 3 
values?
Way 3
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Bit operations

Bit operations
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Bit operations
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Bit operations
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Bit operations
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Bit operations
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Bit operations
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Bit operations
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Bit operations Checking  the state of a bit
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Bit operations Checking  the state of a bit
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Bit operations Checking  the state of a bit
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Bit operations

Inverting a bit
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Bit operations

Inverting a bit
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Bit operations

If XOR is missing



31

Try examples!

Check also 7 segment 
example!



32

Edsger Dijkstra
shortest routes demo

This is fre
e!

Dijkstra
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Edsger Dijkstra
shortest routes demo

Dijkstra Example
Shortest routes from Le  Mans to other cities!

Map of France is here:

Blue circles are cities. We start from Le Mans.
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Edsger Dijkstra
shortest routes demo
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Edsger Dijkstra
shortest routes demo
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Edsger Dijkstra
shortest routes demo
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Edsger Dijkstra
shortest routes demo
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Edsger Dijkstra
shortest routes demo
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Edsger Dijkstra
shortest routes demo

Try to simulate it!
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Bin packing
First fit method

Travelling groups: whole 
group has to have room 

in a bus

20 persons can take room in a bus

Bin packing
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Code School
Bin packing

First fit method

Here are passenger
groups
11 groups
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Code School
Bin packing

First fit method

First group has
8 persons:
put persons to bus 1

BUS 1
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Code School
Bin packing

First fit method

Second group has
7 persons:
put persons to bus 1, too

BUS 1
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Code School
Bin packing

First fit method

3. group has
14 persons:
put persons to bus 2

BUS 2
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Code School
Bin packing

First fit method

4. group has
9 persons:
put persons to bus 3 

BUS 3
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Code School
Bin packing

First fit method

5. group has
6 persons:
put persons to bus 2, too

BUS 2
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Code School
Bin packing

First fit method

6. group has
9 persons:
put persons to bus 3, too

BUS 3
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Code School
Bin packing

First fit method

7. group has
5 persons:
put persons to bus 1, too

BUS 1
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Code School
Bin packing

First fit method

8. group has
15 persons:
put persons to bus 4

BUS 4
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Code School
Bin packing

First fit method

9. group has
6 persons:
put persons to bus 5

BUS 5
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Code School
Bin packing

First fit method

10. group has
7 persons:
put persons to bus 5, too

BUS 5
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Code School
Bin packing

First fit method

11. group has
8 persons:
put persons to bus 6

BUS 6



53

Code School

https://en.wikipedia.org/wiki/Pascal%27s_triangle

Pascal Triangle

https://en.wikipedia.org/wiki/Pascal%27s_triangle
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Code School

https://en.wikipedia.org/wiki/Pascal%27s_triangle

https://en.wikipedia.org/wiki/Pascal%27s_triangle
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Code School
We add first coefficients
to an array – first we create an
array that contains zeroes:
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Code School
We add first coefficients
to an array…
We add there the first 1
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Code School
We add first coefficients
to an array…
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Code School
Print first with zeroes
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Code School
Adjust printing:
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Code School
Adjust printing:
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Recursive functions
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Kakelino’s Code School

Recursive functions

Functions that call themselves.

Function instances are created to RAM memory (stack)

There has to be a condition that stops running.

When all runs have been done, all function instances are 
deconstructed.
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Kakelino’s Code School

Recursive functions

Factorial

Factorial(0) is 1
Factorial(1) is 1
Factorial(n) = n * Factorial(n-1)
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Kakelino’s Code School

Recursive functions

Factorial

Factorial(0) is 1
Factorial(1) is 1
Factorial(n) = n * Factorial(n-1)

int factorial(int n)

{

if (n == 0 || n == 1)

  return 1;

else

 return n * factorial(n-1);

}
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Kakelino’s Code School

Recursive functions

int factorial(int n)

{

if (n == 0 || n == 1)

  return 1;

else

 return n * factorial(n-1);

}

Simulation (what function instances are created)
n is now 4
function call is factorial(4)

1. run: 4 * factorial(3)
2. run: 3 * factorial(2)
3. run: 2 * factorial(1)
4. run: 1 * factorial(0)

Deconstruction:
from run 4 we get  1*1 = 1
from run 3 we get 2*1 = 2
from run 2 we get 3*2 = 6
from run 1 we get 4*6 = 24
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Kakelino’s Code School

Recursive functions
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Kakelino’s Code School

Recursive functions
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Kakelino’s Code School

Recursive functions

To illustrate simulation
some additions!

Variable sum (Fibonacci) is 
incremented twice after last 
print…
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Kakelino’s Code School

Recursive functions
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Kakelino’s Code School

Recursive functions
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Code School
Statistics

Combinations
formula is

n = whole population
k = sample
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Code School
Statistics

Combinations
formula is

n = whole population
k = sample

Example
we have 4 students
how many different pairs can we form
n = 4
k = 2
n! = 1*2*3*4 = 24
k! = 1*2 = 2
(n-k)! = (4-2)! = 2! = 2
Combinations = 24/2*2 = 6
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Code School
Statistics

Example
we have 4 students
how many different pairs can we form
n = 4
k = 2
n! = 1*2*3*4 = 24
k! = 1*2 = 2
(n-k)! = (4-2)! = 2! = 2
Combinations = 24/2*2 = 6

What are those combinations?
If students are A,B,C and D,
We get
A B
A C
A D
B C 
B D
C D
6 possible pairs!
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Code School
Statistics
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Code School
Statistics

Test run:
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Code School
Statistics
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Code School
Statistics

Regression

Excel gives 
this result
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Code School
Statistics

Regression

Java code:
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Code School
Statistics

Regression

Java code:
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Code School
Statistics

Regression

Java code:

Code gives 
these results
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Code School
Statistics

Regression

Code gives 
these results

We use 
values in 
Excel
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Code School
Statistics

Regression

We use 
values in 
Excel

Regression line 
looks like this
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Code School
Statistics

Regression

Here we have 
points and the 
line
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Code School
Statistics

Regression

Here points and
line are shown by 
Python
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Code School
Statistics

Regression

Here points and
line are shown by 
Python

Code
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Ford-Fulkerson
Simulation

Kakelino’s Code School

This i
s fr

ee!
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Ford-Fulkerson
Simulation

A B

C

D

E

F
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Ford-Fulkerson
Simulation

A B

C

D
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Ford-Fulkerson
Simulation
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Ford-Fulkerson
Simulation
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Ford-Fulkerson
Simulation
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Ford-Fulkerson
Simulation
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Ford-Fulkerson
Simulation
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Ford-Fulkerson
Simulation
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Ford-Fulkerson
Simulation
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Ford-Fulkerson
Simulation
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Ford-Fulkerson
Simulation
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Ford-Fulkerson
Simulation
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Ford-Fulkerson
Simulation



100

Ford-Fulkerson
Simulation
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Ford-Fulkerson
Simulation
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Kakelino’s Code School DSP & FFT

Main sources
https://www.dspguide.com
Chapter 12 is excellent here

https://www.dspguide.com/
https://www.dspguide.com/
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Kakelino’s Code School DSP & FFT
Main sources
https://www.dspguide.com
Chapter 12 is excellent here
Wikipedia

https://www.dspguide.com/
https://www.dspguide.com/
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DFT
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DFT

Example
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DFT

Example

X(k) can be now 1, 3/4, 1/2, 1/4

Transformation formula is
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DFT Example

X(k) can be now 1, 3/4, 1/2, 1/4

Transformation formula is
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DFT Example

X(k) can be now 1, 3/4, 1/2, 1/4

Transformation formula is

Value that is corresponding fo X(0) can be calculated 
like this
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DFT Example

X(k) can be now 1, 3/4, 1/2, 1/4

Transformation formula is

Value that is corresponding fo X(0) can be calculated 
like this

Other values can be calculated in the same way 
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DFT Example X(k) can be now 1, 3/4, 1/2, 1/4

Value that is corresponding fo X(0) can be calculated 
like this

Other values can be calculated in the same way 

Common formula is then
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DFT Example X(k) can be now 1, 3/4, 1/2, 1/4

Common formula is then
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DFT Example X(k) can be now 1, 3/4, 1/2, 1/4

The final formula is

Imag.unit is only in the exponent
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DFT Example X(k) can be now 1, 3/4, 1/2, 1/4

The final formula is

Imag.unit is only in the exponent
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C++ code first
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DFT

C# code
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DFT
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DFT  using FFT
C++ code first

Part 1
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DFT  using FFT
C++ code first

Part 2
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DFT  using FFT
C++ code first

Part 3
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DFT  using FFT
C++ code first

Part 4
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DFT  using FFT
C#

Part 1,
FFT function
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DFT  using FFT
C#

Part 2,
SWAP bits function
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DFT  using FFT
C#

Part 3,
Start testing
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DFT  using FFT
C#

Part 3,
Start testing
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DFT  using FFT
C#

TEST run

C++ program results are same
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DFT

One idea was to test how C# handles complex values

Another thing was to test
Wikipedias pseudocodes

Third thing was to wonder why FFT is faster than 
common Brute force algorithm

Thank You!
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Insertion Sort

29 10 14 37 13


Dusty Road

Jingle Punks

YouTube Audio Library

Country & Folk

81.29318
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Insertion Sort

29 10 14 37 13

Start from the right side
Now there is value 10
Copy the value
Find the right place: if there are bigger 
ones on the right, move them to the left,
Until you reach the beginning of the array 
or there is smaller value than 10.
Add value 10 to found new place!
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Insertion Sort

29 10 14 37 13

Start from the right side
Now there is value 10
Copy the value
Find the right place: if there are bigger 
ones on the right, move them to the left,
Until you reach the beginning of the array 
or there is smaller value than 10.
Add value 10 to found new place!

29 10 14 37 13

Copy 10
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Insertion Sort

29 10 14 37 13

Start from the right side
Now there is value 10
Copy the value
Find the right place: if there are bigger 
ones on the right, move them to the left,
Until you reach the beginning of the array 
or there is smaller value than 10.
Add value 10 to found new place!

29 10 14 37 13

Move 29 to 
the right
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Insertion Sort

29 10 14 37 13

Start from the right side
Now there is value 10
Copy the value
Find the right place: if there are bigger 
ones on the right, move them to the left,
Until you reach the beginning of the array 
or there is smaller value than 10.
Add value 10 to found new place!

29 29 14 37 13

Move 29 to 
the right
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Insertion Sort

29 10 14 37 13

Start from the right side
Now there is value 10
Copy the value
Find the right place: if there are bigger 
ones on the right, move them to the left,
Until you reach the beginning of the array 
or there is smaller value than 10.
Add value 10 to found new place!

10 29 14 37 13

Add 10 to
the beginning
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Insertion Sort

29 10 14 37 13

10 29 14 37 13

Choose next one, 
there is 14
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Insertion Sort

29 10 14 37 13

10 29 14 37 13

Copy the value
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Insertion Sort

29 10 14 37 13

10 29 29 37 13

Move 29 to the 
right
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Insertion Sort

29 10 14 37 13

10 14 29 37 13

Add 14 to its 
place
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Insertion Sort

29 10 14 37 13

10 14 29 37 13

Now, 37
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Insertion Sort

29 10 14 37 13

10 14 29 37 13

Copy 37
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Insertion Sort

29 10 14 37 13

10 14 29 37 13

There are no 
bigger ones on the 
left side
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Insertion Sort

29 10 14 37 13

10 14 29 37 13

Leave 37 to its 
original place
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Insertion Sort

29 10 14 37 13

10 14 29 37 13

Last value, 13
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Insertion Sort

29 10 14 37 13

10 14 29 37 13

Copy 13
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Insertion Sort

29 10 14 37 13

10 14 29 37 13

Copy 13New place will 
be here!
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Insertion Sort

29 10 14 37 13

10 14 29 37 13

Copy 13
New place will be 
here! So, these values have to be 

moved to the right
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Insertion Sort

29 10 14 37 13

10 14 14 29 37

Move value 14, 
29 and 37 to the 
right
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Insertion Sort

29 10 14 37 13

10 13 14 29 37

Add 13
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Insertion Sort

29 10 14 37 13

10 13 14 29 37

Ready!
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Insertion Sort

29 10 14 37 13

10 13 14 29 37

How efficient is this algorithm?
Time complexity, 
T(n) = O(n^2), 
where n is array size.
When n grows, elapsed running 
time follows function f(n^2).
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Java code
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Java code: 
test
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Quick Sort

4 2 3 1 4 1 8 7 6 5

Easy learning, pale info in a 
nutshell!


Green Leaf Stomp

Jingle Punks

YouTube Audio Library

Country & Folk

75.415054


Down 'N Dirty

Jingle Punks

YouTube Audio Library

R&B & Soul

86.88393
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Quick Sort

1) Find the pivot value

4 2 3 1 4 1 8 7 6 5
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Quick Sort

1) Find the pivot value
* it can be first value
* it can be the median
* it is good choose the median of 3 
values: first, last, middle

4 2 3 1 4 1 8 7 6 5
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Quick Sort

1) Find the pivot value
* it can be first value
* it can be the median
* it is good choose the median of 3 
   values: first, last, middle

Now, let’s use median!

4 2 3 1 4 1 8 7 6 5
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Quick Sort

1) Find the pivot value
* it can be first value
* it can be the median
* it is good choose the median of 3 
   values: first, last, middle

Now, let’s use median!

4 2 3 1 4 1 8 7 6 5

Excel gives median 4. 
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Quick Sort

1) Find the pivot value
* it can be first value
* it can be the median
* it is good choose the median of 3 
   values: first, last, middle

SO, first pivot value is 4

4 2 3 1 4 1 8 7 6 5
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Quick Sort

SO, now we divide our array to 2 parts: values that are 
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5
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Quick Sort

SO, now we divide our array to 2 parts: values that are 
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5

4 2 3 1 4 1 8 7 6 5
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Quick Sort

SO, now we divide our array to 2 parts: values that are 
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5

4 2 3 1 4 1 8 7 6 5

New pivot values:  3 and  6
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Quick Sort

SO, now we divide our array to 2 parts: values that are 
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5

4 2 3 1 4 1Pivot is 3

2 1 1 4 3 4
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Quick Sort

SO, now we divide our array to 2 parts: values that are 
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5

8 7 6 5Pivot is 6

8 7 65

8 76

Pivot is 7
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Quick Sort

SO, now we divide our array to 2 parts: values that are 
smaller than pivot and values that are bigger than pivot

4 2 3 1 4 1 8 7 6 5

4 2 3 1 4 1Pivot is 3

2 1 1 4 3 4

1 1 2

Pivot is 2
4 43

Pivot is 4
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Quick Sort

Now, we sort all partial arrays and combine them to form a sorted array!

4 2 3 1 4 1 8 7 6 5
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Quick Sort
4 2 3 1 4 1 8 7 6 5

Code



165

Quick Sort

4 2 3 1 4 1 8 7 6 5

Test run
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Quick Sort

Sorting time 
example

10 millions values
-> 2 seconds!
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Kakelino’s Code School

Shell Sort

Simulating sorting methods

This i
s f

ree!
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Kakelino’s Code School

Shell Sort

20 30 5 9 2 0 22

Shell sort is  a slow sorting method but it is normally faster
than selection sort:
* many comparisons and swappings but no so many as in selection sort
* now we compare elements using distances

Now we are going to simulate shell sort!




169

Kakelino’s Code School

20 30 5 9 2 0 22

Definition of this array can be like this:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Shell Sort
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Kakelino’s Code School

20 30 5 9 2 0 22

Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 1:
First distance between elements that are compared to each other
is normally size of the array divided by:
now it is 7/2 and we can round it to be 3.
We want to find the smallest value and add it to the beginning of this 
array.
SO, the first value is now 20, place is values[0].
Now we compare 20 to the value that is 3 places from place 0,
and it is place 3 and there we have value 2.

Shell Sort
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Kakelino’s Code School

20 30 5 9 2 0 22

Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 1:
SO, let’s go on:
2 < 20?
Yes, we swap values and get:

2 30 5 9 20 0 22

Shell Sort
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Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 1 goes on:
We go on with value 30 now:
0 < 30?
Yes, values are swapped and we  get

2 30 5 9 20 0 22

2 0 5 9 20 30 22

Shell Sort
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Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 1 goes on:
We go on with value 2 now:
22 < 5?
No, we do nothing
So, after 1. round we have situation:

2 0 5 9 20 30 22

2 0 5 9 20 30 22

Shell Sort
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Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 2:
Distance is now 3/2, we round it to 2
9 < 2?
No
20 < 0?
No
30 < 5?
No
22 < 9?
No

2 0 5 9 20 30 22

Shell Sort
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Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 3: distance is now 1
5 < 2?
No
9 < 0?
No
20 < 5?
No
30 < 9?
No
22 < 20?

2 0 5 9 20 30 22

Shell Sort
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Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

Round 4: distance is now 0
0 < 2?
Yes

2 0 5 9 20 30 22

0 2 5 9 20 30 22

5 < 2?
9 < 5?
20 < 9?
30 < 20?
22 < 30?
Yes, swapping

Shell Sort
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Kakelino’s Code School
Definition of this array:
int values[] = {20, 30, 5, 9, 2, 0, 22};

That’s is!

Array is sorted!

0 2 5 9 20 22 30

Shell Sort
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Kakelino’s Code School

Here is c code:

Shell Sort
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Kakelino’s Code School

Let’s try  using different input sizes
Here is c code 
a) filling array

Shell Sort
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Kakelino’s Code School

Let’s try  using different input sizes
Here is c code 
b) taking execution time

Shell Sort
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Kakelino’s Code School

Selection Sort

Execution times as a diagram
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Thank You!

Give feedback!

This ebook copy is free!
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